14 th Congress of the International Society of Photogrammetry Hamburg 1980

Commission V - Working Group 6
Presented Paper

Elena BAJ

Full assistant at the Chair of Topography, Politecnico of Milano Assistant professor, Institute of Geodesy, Topography and Photo grammetry, University of Pisa, Italy

Title

Remarks about the monocular and stereoscopic observation of whi te strips on a zebra crossing.

Abstract

Observing white strip images on a zebra crossing with both mono cular and stereoscopic method, it seems that their width is di \bar{f} ferent, and precisely their width looks larger with stereoscopic observation than it looks with the monocular one. In order to e stablish if it is only a sensorial appearance we have tried to measure the width of the strips, always on the same photogram, with monocular as well as stereoscopic observation: the result was that the width obtained by stereoscopic observation is some micron larger. The measures have been performed with a Stereocom parator OMI-TA3/P, available at the Institute of Topography (Po litecnico di Milano), which allows to get plate coordinates both with monocular and stereoscopic observation.

Text
Most of the instruments used in photogrammetry are based on bino cular observation of stereoscopic photograms, but there are also other instruments, as the monocomparators, based on monocular ob servation.

The process of vision is much complicated and it is still being studied; in order to deepen it, the so-called evoked potential method is also used; this method consists in registering, by ele ctrodes fixed on the skin of the head with a tape, the potenti als which are evoked from the eye perceptions. These potentials are very weak, of about 5 microvolts or less, so it is very dif ficult to register them. However, it is known that the brain fu ses the images of the same object received from the two eyes as it fuses the colours (anaglyphic method).
In the same way the brain fuses two completely different images which it receives from the two eyes; actually if you look f.i.
the tangent of the angle θ formed by the straight line and the X axis.
Analogously it is made for the other terns of points thus obtai ning, given n straight lines, $n \times 3$ values of m, and thence of $\bar{\theta}$.
Among all the calculated values of θ, the max and min values are individuated and in this interval 10 values of θ are considered, differing in the constant increase.
Here is now the iteration: for each value of θ, the most probable position for each straight line based on the least scuares prin ciple is determined, that is the value for which the sum of the square residuals of the points collimated as regards the straight line is minimum.
A $\sum_{1}^{3} i v_{i}^{2}$ is in fact calculated and memorized, and the elements a re also kept defining the position of the straight line.
Analogously it is made for all the straight lines and at last if n are the straight lines $\sum_{1}^{n} \sum_{1}^{3} v_{i k}^{2}$ is calculated and memorized. All these calculations are repeated for the 10 considered values of θ, still taking into account the above sum. The chosen value of θ still based on the least squares criterion, is that corresponding to the double sum minimum value; for such a value the program has already calculated the optimum straight line position. The width between the white strips as the interval between the straight lines themselves and thence the mean and the m.s.e. may be obtained.

In order to simplify and improve calculations at each iteration the axes X and Y are rotated so as the considered direction be parallel to the axis X (Fig.1). Coordinates of collimated points are of course changed and for each value of θ considered, it will result for every considered tern

$$
\begin{array}{ll}
X^{\prime}=Y \operatorname{sen}|\theta|+X \cos |\theta| \\
Y^{\prime}=Y \cos |\theta|-X \operatorname{sen}|\theta| & \text { if } \theta \text { is positive } \\
X^{\prime}=-Y \operatorname{sen}|\theta|+X \cos |\theta| \\
Y^{\prime}=Y \cos |\theta|+X \operatorname{sen}|\theta| & \text { if } \theta \text { is negative }
\end{array}
$$

When the coordinates are changed, the residuals v_{i} become Δy and therefore to obtain the condition $\sum_{1}^{3} v_{i}^{2}=\min$, the straight lines must be moved parallelly with axis X.

Results

In the different rows of Table 1 are reported:

1) - the number of the zebra crossing taken into consideration;
$\frac{\overline{2}}{}$) - the number of the examined strips in the zebra crossing;
(3) - the width of the white (and black) strip obtained with the stereoscopic observation;
2) - the width of the white (and black) strip obtained with the monocular observation;
3) - the difference between the width obtained with the stereosco pic observation and the monocular one;
4) 7) 8) - the m.s.e. respectively of the values in rows 3, 4, 5;
at the same time with one eye a cage and with the other eye a lion, of proper dimension, you'll see the lion in the cage.
It would be interesting to investigate if this fusing has some effect also on the measurements and if the monocular and the ste reoscopic observations give the same results. In fact that is the aim of this study.

Subject of the experiments and methodology

As subject of study were taken the white strip images on a zebra crossing which are very common in urban aerial photograms and ea sily distinguishable.
Among the photograms which were at our disposal, we have chosen a photogram taken in Milan at a height of 1200 m ; the photogram scale is 1: 8 000. It includes the images of about fifty zebra crossings.The stereoscopic observation needed of course the pre ceding and the successive photogram.
We have investigated whether the two different methods give the same value for the width of white strip images measured on the same photogram. The measures have been performed with an accura cy of about $\pm 2 \mu \mathrm{~m}$, with a Stereocomparator OMI-TA3/P.
In order to obtain the width of each white strip image, the 4 coins delimiting it were firstly collimated; this method was how ever soon abandoned owing to its insufficiently accurated results. It must be noticed however how often the area surrounding the co in is quite badly defined.
Therefore it was thought it suitable to deduce the strip image width as the interval between the limiting straight lines: assu med such lines as parallel, theoretically the coordinates of 2^{-} points of a straight line delimiting a strip and the coordinates of only 1 point for all the other straight lines are sufficient.
Aiming at gathering plentiful and thence more reliable results, 3 points were collimated for each separating line: 1 on the cen tre, 2 at the extremities of the strip, recording the coordina tes.

A program was then studied for the computer to obtain for each zebra crossing, the width of each strip, which approaches $100 \mu \mathrm{~m}$.
In the repeated measurements however differencies nearing $6 \mu \mathrm{~m}$ we re obtained in the values of the width calculated for the same strip. On the other hand, taking into account the mean of the widths obtained, such differencies did not exceed $2 \mu \mathrm{~m}$. It was then deemed it useful to derive for each zebra crossing a mean more reliable than the single value, on which comparisons were made.
Measurements were carried out as above said by two different ob serving methods, namely:
a) - monocular viewing
b) - stereoscopic binocular viewing.

The program for the computer is iterative: given the coordinates of three points 1, 2, 3 of the separating line, the directions of the straight lines $y=m x+b$ defined by the couples of points 1-2 , 1-3 , 2-3 are calculated. In total 3 directions for the tern of points belonging to the first separating line; m is

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& TAB \& E 1 \& \& \& \& \& \& \\
\hline \& 1 \& 2 \& \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \\
\hline \& \& \& \[
\begin{aligned}
\& n \\
\& \therefore \\
\& \therefore \\
\& \therefore \\
\& i
\end{aligned}
\] \& strip width stereo vision \(\mu^{\mathrm{u}}\) \& \begin{tabular}{l}
strip \\
width \\
monocu \\
lar vi- \\
\(\operatorname{sion} /{ }^{u m}\)
\end{tabular} \& \[
\begin{gathered}
\Delta l \\
3-4 \\
4-3 \\
\\
\\
\hline \mathrm{um}
\end{gathered}
\] \& \& \& \(\sigma\)
\(\Delta 乙\)

um \& $$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \underline{a} \\
& \underline{a} \\
& \\
& \frac{c}{0} \\
& \frac{0}{n}
\end{aligned}
$$ \& \times

mm。 \& Y
mm. \& GDR

\hline \& 1 \& 15 \& white black \& $$
\begin{array}{r}
114 \\
28
\end{array}
$$ \& \[

$$
\begin{array}{r}
100 \\
42
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& +14 \\
& -14
\end{aligned}
$$
\] \& 1,12 \& 1,30 \& 1,72 \& \times \& 87 \& 97 \& -48^{9}

\hline \& 2 \& 3 \& $$
\begin{aligned}
& w \\
& b
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
111 \\
30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
101 \\
40
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& +10 \\
& +\quad 10
\end{aligned}
$$
\] \& 2,60 \& 1,78 \& 3,15 \& $\times \times \times$ \& 89 \& 100 \& -49^{9}

\hline $$
\begin{aligned}
& \square \\
& \mathrm{N} \\
& 0
\end{aligned}
$$ \& 3 \& 13 \& \[

$$
\begin{aligned}
& w \\
& \mathrm{~b}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
111 \\
34
\end{array}
$$

\] \& \[

$$
\begin{gathered}
102 \\
44
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& + \\
& \hline \\
& -10
\end{aligned}
$$
\] \& 1,63 \& 1,22 \& 2,1 \& $\times \times \times$ \& 77 \& 87 \& -46^{9}

\hline \& 4 \& 14 \& $$
\begin{aligned}
& w \\
& b
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
102 \\
40
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 93 \\
& 49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +9 \\
& -\quad 9
\end{aligned}
$$
\] \& 1,21 \& 1,39 \& 1,8 \& \times \& 76 \& 85 \& $+42^{9}$

\hline \& 5 \& 9 \& $$
\begin{aligned}
& w \\
& b
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
113 \\
32
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
106 \\
39
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+7 \\
-7
\end{array}
$$
\] \& 1,45 \& 1,45 \& 2,7 \& $\times \times \times$ \& 73 \& 75 \& -45^{9}

\hline \& 6 \& 9 \& $$
\begin{aligned}
& w \\
& b
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
105 \\
38
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 97 \\
& 46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +8 \\
& -8
\end{aligned}
$$
\] \& 1,31 \& 1,71 \& 2,1 \& $\times \times$ \& 95 \& 65 \& $+44^{\text {g }}$

\hline \& 7 \& 6 \& $$
\begin{aligned}
& \text { w } \\
& \text { b }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 95 \\
& 47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 90 \\
& 50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +\quad 5 \\
& -\quad 3
\end{aligned}
$$
\] \& 4,75 \& 1,25 \& 2,1 \& $\times \times \times$ \& 93 \& -59 \& $+89^{9}$

\hline \& 8 \& 8 \& $$
\begin{aligned}
& \text { w } \\
& \text { b }
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
105 \\
36
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
101 \\
40
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& +4 \\
& -\quad 4
\end{aligned}
$$
\] \& 1,55 \& 1,51 \& 2,2 \& $\times \times \times$ \& 95 \& -53 \& -45^{9}

\hline
\end{tabular}

	1	2		3	4		5	6	7	8	9		10	11	12
	9	5	w	$\begin{array}{r} 111 \\ 31 \end{array}$	$\begin{array}{r} 104 \\ 39 \end{array}$	+	7 8	1,86	1,51	2,4		\times	90	- 49	-45^{9}
	10	10	w b	108	$\begin{array}{r} 103 \\ 39 \end{array}$	+		1,58	1,60	2,2		\times	69	- 48	$-45^{\text {g }}$
	11	4	w b	$\begin{array}{r} 114 \\ 28 \end{array}$	$\begin{array}{r} 105 \\ 40 \end{array}$			1,07	2,11	2,4		\times	54	- 67	-46^{9}
	$\begin{array}{r} 11 \\ \text { bis } \end{array}$	3	b	97 30	$\begin{aligned} & 88 \\ & 39 \end{aligned}$	+	9	2,12	2,07	2,9	\times	\times	54	- 67	-46^{9}
\square	12	16	w b	$\begin{array}{r} 104 \\ 39 \end{array}$	$\begin{aligned} & 98 \\ & 45 \end{aligned}$	+	6	1,20	1,28	1,7	$\times \times$	\times	56	- 60	$+89^{9}$
	13	13	w ${ }^{\text {b }}$	$\begin{array}{r} 101 \\ 42 \end{array}$	$\begin{aligned} & 96 \\ & 47 \end{aligned}$	+	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	1,44	1,66	2,2	$\times \times$	\times	53	- 53	$+43^{9}$
	14	13	w	$\begin{array}{r} 107 \\ 36 \end{array}$	$\begin{array}{r} 103 \\ 39 \end{array}$	+	$\begin{gathered} 4 \\ 3 \end{gathered}$	1,27	1,54	2,0	$\times \times$	\times	40	- 53	-44^{9}
	15	11	w b	99 44	$\begin{aligned} & 99 \\ & 44 \end{aligned}$		0	1,39	1,17	1,8		\times	38	- 60	-89^{9}
	16	5	w	$\begin{aligned} & 97 \\ & 46 \end{aligned}$	$\begin{aligned} & 91 \\ & 49 \end{aligned}$	+	6 3	2,09	1,90	2,8	\times	\times	41	- 67	$+43^{9}$
	17	10	w	$\begin{array}{r} 104 \\ 40 \end{array}$	$\begin{gathered} 101 \\ 43 \end{gathered}$		3 3	1,23	1,09	1,6	\times	\times	73	- 87	$+44^{9}$

	1	2		3	4	5	6	7	8	9	10	11	12
	19	11	w	102 39	$\begin{aligned} & 99 \\ & 43 \end{aligned}$	$\begin{aligned} & +3 \\ & -4 \end{aligned}$	1,18	1,18	1,7	$\times \times \times$	110	-20	-39^{9}
	20	5	w b	99 45	$\begin{aligned} & 96 \\ & 49 \end{aligned}$	$\begin{aligned} & +3 \\ & -4 \end{aligned}$	1,72	2,06	2,7	$\times \times \times$	110	2	$+41^{\text {g }}$
	21	6	w b	$\begin{array}{r} 103 \\ 39 \end{array}$	$\begin{array}{r} 100 \\ 42 \end{array}$	$\begin{aligned} & +3 \\ & -3 \end{aligned}$	1,51	1,77	2,3	$\times \times \times$	112	2	-89^{9}
	22	8	$\begin{gathered} \mathrm{w} \\ \mathrm{~b} \end{gathered}$	92 49	$\begin{aligned} & 87 \\ & 56 \end{aligned}$	$\begin{aligned} & +5 \\ & -7 \end{aligned}$	1,45	1,24	1,9	$\times \times$	109	8	$+89^{9}$
0	23	6	$\begin{aligned} & w \\ & b \\ & b \end{aligned}$	$\begin{aligned} & 88 \\ & 52 \end{aligned}$	$\begin{aligned} & 82 \\ & 58 \end{aligned}$	$+6$	1,10	1,60	1,9	\times	109	11	$+89^{9}$
P	24	8	b	$\begin{array}{r} 110 \\ 32 \end{array}$	$\begin{array}{r} 103 \\ 38 \end{array}$	$\begin{array}{r} +7 \\ -6 \end{array}$	1,45	2,09	2,5	\times	103	104	-44^{9}
	25	10	$\begin{aligned} & \mathrm{w} \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & 99 \\ & 42 \end{aligned}$	$\begin{array}{r} 102 \\ 38 \end{array}$	$\begin{array}{r} -3 \\ +\quad 4 \end{array}$	1,23	1,20	1,7	$\times \times$	105	103	$+42^{9}$
	26	8	$\begin{aligned} & \mathrm{w} \\ & \mathrm{~b} \end{aligned}$	$\begin{array}{r} 101 \\ 43 \end{array}$	$\begin{array}{r} 100 \\ 42 \end{array}$	$\begin{aligned} & +1 \\ & +1 \end{aligned}$	1,39	1,50	2,0	$\times \times$	81	76	$+44^{9}$
	27	13	w b	107 36	96 47	$\begin{aligned} & +11 \\ & -11 \end{aligned}$	1,70	1,39	2,2	$\times \times \times$	20	60	-45^{9}
	28	13	w			$\begin{aligned} & +11 \\ & -12 \end{aligned}$	1,30	1,36	1,9	$\times \times$	18	58	$-45^{\text {g }}$

	1	2		3	4	5	6	7	8	9	10	11	12
	29	9	w b	97 45	$\begin{aligned} & 91 \\ & 52 \end{aligned}$	+6 -7	1,45	1,36	2,0	$\times \times$	20	- 55	$+43^{9}$
	31	13	$\begin{aligned} & \mathrm{w} \\ & \mathrm{~b} \end{aligned}$	$\begin{array}{r} 106 \\ 36 \end{array}$	$\begin{array}{r} 101 \\ 42 \end{array}$	$\begin{aligned} & +5 \\ & -6 \end{aligned}$	1,68	1,46	2,2	\times	14	- 30	$-57^{\text {9 }}$
	32	7	$\begin{aligned} & w \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & 96 \\ & 44 \end{aligned}$	$\begin{aligned} & 91 \\ & 47 \end{aligned}$	+5 -3	2,15	1,88	2,9	\times	15	- 34	$+51^{9}$
	33	8	$\begin{aligned} & \text { w } \\ & \text { b } \end{aligned}$	$\begin{array}{r} 100 \\ 41 \end{array}$	$\begin{aligned} & 99 \\ & 41 \end{aligned}$	$\begin{array}{r} 1 \\ +\quad \end{array}$	1,79	2,13	2,8	$\times \times \times$	15	- 37	-59^{9}
\square	34	7	$\begin{aligned} & \text { w } \\ & \text { b } \end{aligned}$	107	$\begin{array}{r} 101 \\ 43 \end{array}$	$\begin{aligned} & +6 \\ & -5 \end{aligned}$	1,65	1,91	2,5	$\times \times \times$	31	- 17	-46^{9}
.	36	4	$\begin{aligned} & \text { w } \\ & \text { b } \end{aligned}$	$\begin{aligned} & 95 \\ & 45 \end{aligned}$	$\begin{aligned} & 92 \\ & 50 \end{aligned}$	+3 -5	1,51	1,16	1,9	$\times \times$	31	19	$+42^{9}$
	37	7	$\begin{aligned} & \mathrm{w} \\ & \mathrm{~b} \end{aligned}$	95 45	$\begin{aligned} & 97 \\ & 43 \end{aligned}$	-2 $+\quad 2$	2,55	2,11	3,3	$\times \times$	38	17	$+42^{9}$
	38	8	w	104 42	96 47	+8 -5	1,48	1,45	2,07	$\times \times$	- 6	- 1	-58^{9}
	39	9	$\begin{aligned} & \text { w } \\ & \mathrm{b} \end{aligned}$	$\begin{array}{r} 105 \\ 48 \end{array}$	$\begin{aligned} & 94 \\ & 49 \end{aligned}$	$\begin{array}{r} +11 \\ -\quad 9 \end{array}$	1,71	1,50	2,3	\times	- 4	- 5	-58^{9}
	40	13	w	$\begin{array}{r} 107 \\ 36 \end{array}$	$\begin{array}{r} 100 \\ 43 \end{array}$	+7 -7	2,11	2,27	3,1	\times	3	- 43	-46^{9}

1	2		3	4			6	7	8		9		10	11	12
51	8	w b	$\begin{array}{r} 129 \\ 33 \end{array}$	$\begin{array}{r} 108 \\ 38 \end{array}$	+	$\begin{array}{r} 11 \\ 5 \end{array}$	1,82	1,53	2,4	\times	$\times \times$	\times	- 52	- 101	-47^{9}
52	7	w b	$\begin{array}{r} 107 \\ 38 \end{array}$	$\begin{array}{r} 103 \\ 42 \end{array}$	+	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	1,66	1,17	2,0	\times	$\times \times$	\times	- 52	- 99	$+43^{9}$
53	8	w b	$\begin{array}{r} 112 \\ 31 \end{array}$	$\begin{array}{r} 110 \\ 34 \end{array}$	+	2 3	1,26	1,40	1,9	\times	$\times \times$	\times	- 54	- 98	-48^{9}

Q
w

FIG. 1
9) - the image sharpness: three asterisks correspond to the hi ghest degree of sharpness;
10) - the x coordinate of the centre of the zebra crossing as re gards the axes of the photogram; the X direction is the flight one;
11) - the y coordinate;
12) - the angle θ between the X axis and the direction of the strips of the zebra crossing.
Table 1 shows that the width of white strips obtained with stere oscopic observation is greater than the one obtained with monocular observation. The greatest difference is $14 \mu \mathrm{~m}$, but the we ighted mean of the obtained values is $4.9 \pm 0.5 \mu \mathrm{~m}$ and this is the most meaningful result obtained.
Moreover, it does not seem to exist a remarkable correlation bei ween the values of the resulting differences and the examined vā riables X, Y, θ.
At this point we have got to present some hypotheses on the po int of the major strip width obtained with the stereoscopic ob servation in comparison to the monocular one. The major wid̄th can be attributed:
a) - to the instruments;
b) - to the operator because of his faulty sight;
($\overline{\text { C }}$ - to the operator as an ordinary consequence of the stereosco pic observation.
Of course the various hypotheses might coexist.
In order to ascertain the validity of the hypothesis a), the sa me operator needs to repeat the measurements with many instruments of high precision; as for the hypotheses \underline{b}) and \underline{c}) we can't help repeating the same measures on the same instruments with different operators.

BIBLIOGRAPHY

- Rapport du Groupe de Travail IV/2 - Commission IV: Congrès In ternational de Photogrammétrie, Losanna 8-20 Luglio,19 $\overline{6} 8$
- Gregory Richard L. : Occhio e cervello - Il Saggiatore, Milano, 1966
- Mach Ernst : L'analisi delle sensazioni, ed il rapporto tra fí sico e psichico - Feltrinelli, Milano, 1975
- Ross J. : Le risorse della percezione binoculare - Illusione e realtà - Le Scienze S.p.A. editore

